
CENG 499

Final Project Report

By:
Group Number: 6

Anubhav Mishra (anubhav@uvic.ca) - V00740087
Cole Bosmann (cboss24@uvic.ca) - V00722585

Conrad Foucher (conrad@foucher.ca) - V00721922

Supervisor: Dr. Kin F. Li
Submitted: August 1st 2014

Table	
 of	
 Contents	

1.	
 Introduction	
 ...	
 4	

1.1	
 What	
 is	
 a	
 Password	
 Manager	
 ..	
 4	

1.2	
 What	
 is	
 Leap	
 Motion	
 ..	
 5	

1.3	
 What	
 is	
 Air.Auth	
 ..	
 6	

1.3.1	
 Overview	
 ..	
 6	

1.3.2	
 Goals	
 ...	
 6	

2.	
 System	
 Architecture	
 ..	
 7	

2.1	
 Frontend:	
 ...	
 7	

2.2	
 Backend:	
 ..	
 8	

2.2.1	
 Node.js	
 Application	
 ..	
 8	

2.2.2	
 Nginx	
 Webserver	
 ..	
 8	

2.2.3	
 MySQL	
 (Relational	
 Database)	
 ...	
 8	

2.2.4	
 Redis	
 (NoSQL	
 Database)	
 ...	
 9	

3.	
 User	
 Functionality	
 ...	
 10	

3.1	
 Account	
 Creation	
 ...	
 10	

3.2	
 Account	
 Management	
 ...	
 11	

3.3	
 Site	
 Management	
 ...	
 14	

3.4	
 Account	
 Linking	
 ...	
 15	

3.5	
 Site	
 Launching	
 ..	
 16	

4.	
 Leap	
 Motion	
 ...	
 19	

5.	
 API	
 ..	
 23	

5.1	
 Index	
 Route	
 ...	
 23	

5.2	
 Sign	
 Up	
 Route	
 ..	
 24	

5.3	
 Login	
 Route	
 ..	
 24	

5.4	
 Hand	
 Compute	
 Route	
 ...	
 25	

5.5	
 Hand	
 Authentication	
 Route	
 ...	
 26	

5.6	
 Validate	
 Pin	
 Route	
 ...	
 27	

5.6	
 Session	
 Get	
 Route	
 ..	
 27	

5.7	
 Get	
 Auth	
 Key	
 Route	
 ...	
 28	

5.8	
 Launch	
 Route	
 ..	
 28	

6.	
 Database	
 ...	
 29	

6.1	
 MySQL	
 ..	
 29	

6.2	
 Redis	
 ..	
 31	

7.	
 	
 Security	
 ..	
 32	

7.1	
 User	
 Validation	
 ...	
 32	

7.2	
 Site	
 Password	
 Encryption/Decryption	
 ..	
 33	

8.	
 Session	
 and	
 Cookie	
 Management	
 ...	
 35	

8.1	
 Air.Auth	
 User	
 Session	
 Management	
 ..	
 35	

8.2	
 Air.Auth	
 Hand	
 Token	
 Session	
 ..	
 35	

8.3	
 Air.Auth	
 Account	
 Session	
 Management	
 ...	
 36	

9.	
 Chrome	
 extension	
 ...	
 36	

10.	
 Future	
 Work	
 ...	
 38	

11.	
 References:	
 ...	
 40	

List	
 of	
 Figures	

Figure 1: Top Level System Architecture ... 7	

Figure 2: Backend Component Interactions ... 9	

Figure 3: Registration UI (Step 1) .. 10	

Figure 4: Registration UI (Step 2) .. 11	

Figure 5: Dashboard .. 11	

Figure 6: Session Management ... 12	

Figure 7: Change Master Password .. 12	

Figure 8: Change PIN ... 13	

Figure 9: Delete Account .. 13	

Figure 10: Add/Edit Site ... 14	

Figure 11: Manage Poses .. 15	

Figure 12: Account Linking .. 16	

Figure 13: Pin Entry .. 17	

Figure 14: Hand Scan .. 17	

Figure 15: Launch Pose .. 18	

Figure 16: Hand Model ... 19	

Figure 17: Bone length differences ... 21	

Figure 18: Angles between fingertips and joints .. 21	

Figure 19: Password Hashing ... 33	

Figure 20: Account Creation / Account Linking .. 34	

Figure 21: Fetch Site Password ... 34	

List	
 of	
 Tables	

Table 1: User Table ... 29	

Table 2: Pose Table ... 30	

Table 3: Site Table .. 30	

Table 4: Pose Assigned Table ... 31	

Table 5: Redis Datastore for Air.Auth .. 31	

Table 6: Redis CLI and Node.js Client Commands to Access Data 32	

1. Introduction
1.1 What is a Password Manager

As technology continues to advance, it proliferates deeper and deeper into our everyday
lives. As a result, the average user has an ever-increasing number of accounts for various
sites and services. Each of these accounts requires a username/password combination,
which is left to the user to remember. This is easily accomplished for a few accounts,
however as the number of accounts increases, the task becomes more and more difficult.
Users compensate for this increased difficulty in two main way:

• Users select simple usernames and password. In this context, “simple”
represents short, dictionary words with few capitals, symbols, or numbers. This
reduces account security by allowing attackers to more easily guess a user’s
credentials (brute force attack).

• Users reuse usernames and passwords over multiple sites/services. This
reduces account security by allowing an attacker to compromise multiple accounts
with one correct credential set.

Password managers were created to alleviate user strain, while maintaining account
security. The general idea is to allow a user to store their various site passwords in a
central location, and gain access to them using a single master password. This design
allows users to maintain strong username/password combinations for their various
sites/services, while requiring them to only memorize a single master password.

There are numerous variations of password managers. Two main distinctions include:

• Password Generator vs Password Storage. Early password managers attempted
to increase site security by generating long, pseudo-random passwords for user’s
accounts. This increased security, because dictionary attacks were no longer
effective, however it ensured that users could only access their sites through the
password manager. If the service was temporarily down, the user’s would lose
access to all their accounts. Future iterations (password storages) corrected this by
allowing users to still select their site passwords, which does not increase security,
but increases the flexibility from the user’s perspective.

• Offline vs Online. There exists both application based (offline) and web based

(online) password manager services. Both variations have their advantages and
disadvantages. Offline password manager’s are considered more secure, as the
data is held locally on a user’s machine. In this scenario, the benefit of
compromising a system is minimal for an attacker, as they will only gain access to
one user’s set of accounts. The downside of an offline approach is that users only
have access to their passwords on their personal devices. This accessibility is
ameliorated in a web-based approach, where users can access their passwords
from any device with an internet connection. However, due to their very nature,
web-based managers must be exposed to the internet, making it potentially
vulnerable to attacks. Due to the valuable data contained in web-based managers,
they are also attractive targets for attacks.

The system implemented in this paper is a password storage, web-based system. These
distinctions were chosen in order to provide the best usability for the end user. The
inherent security concerns of these choices and our proposed solutions will be addressed
later in this report.

1.2 What is Leap Motion

Leap Motion, Inc. is a San Francisco based company that manufactures and markets a
computer hardware sensor that supports hand and finger motion as input. This device is
called a Leap Motion Controller. The Leap controller is a small USB device, designed to
be connected directly to a user’s computer and placed on the user’s desktop. It uses two
IR cameras and three IR LEDs to capture hand motion within an approximate 1 meter
hemisphere surrounding the controller. To accomplish this, the LEDs project IR light
onto a user’s hand. A portion of this projected light is reflected back towards the IR
camera, which captures approximately 300 frames per second.

The captured data is then sent to the host computer via USB for further processing and
analysis. This processing and analysis is proprietary information held by Leap Motion,
however the “complex math” of this step yields a 3D image of the user’s hand(s). This
3D image provides information about the position and dimensions of various hand
components (palm, fingers, joints, etc…). Leap Motion then exposes this data through an
SDK, which allows developers to build applications using this revolutionary hardware as
a basis. Leap Motion’s ‘Airspace’ is an online app repository that hosts such apps and
showcases the limitless possibilities that come when developing with Leap Motion. The
system implemented in this paper is one such example of what is possible using Leap.

1.3 What is Air.Auth

1.3.1 Overview

Air.Auth is a fusion of the two previously discussed technologies. First and foremost, it is
a web-based password manager. The main service it provides is to allow users access to
all their site specific passwords using a single master password. Where Air.Auth differs
from traditional managers is how this master password authentication is performed.
Using the Leap Motion, Air.Auth authenticates using a user’s hand dimensions and a
combination of hand poses. Once this authentication is performed, Air.Auth will also
allow users to launch sites using pre-assigned poses. Once a site is launched, a new tab is
created, the site is loaded, the user’s credentials are populated, and the user is logged in.
From start to finish, Air.Auth allows a user access to their sites without needing to touch
a keyboard or a mouse.

1.3.2 Goals

The goals of this project are as follows:

• To explore the Leap Motion V2 Beta, and construct a way to utilize a user’s hand
for authentication.

• To build a fully functioning system, ready for user interaction. This includes
traditional web service components such as account creation, account recovery,
account management, session management, and site usage support.

• To construct this service using industry standard security practices in order to
properly protect user’s information.

• To utilize cutting edge technology for Air.Auth’s sub-components, to facilitate
scalability should the user base grow.

• To share Air.Auth under an open source license, and craft it in a modular fashion
to enable other developers to build upon it.

This report will enumerate on each of these goals and show how the Air.Auth team has
strived to achieve them.

2. System Architecture
The system was built entirely using javascript. Javascript is known as the “Ultimate
Scripting Language” amongst its supporters and allows for asynchronous execution. It is
supported by all of the main browsers, and writing both the frontend and backend in the
same language brings a sense of standardization and fluidity to the system. Figure 1
below shows a high level view of the components that compose Air.Auth.

Figure 1: Top Level System Architecture

2.1 Frontend:

The frontend is everything that a user sees and interacts with. The Air.Auth frontend is
built using javascript, jQuery and Twitter’s bootstrap CSS framework. jQuery is used to
implement client side HTML scripting and allows easy asynchronous HTTP requests to
Air.Compute (API). Twitter bootstrap offers ready-made grid systems that allow for rapid
frontend development. Bootstrap is also completely customizable. The grid system is
responsive so it can be used across all screen sizes such as mobile devices, tablets and
laptops. Bootstrap also comes with its own javascript class that allows modals, alerts,
tooltips and button manipulation.

2.2 Backend:

The backend encompasses the system component that power the Air.Auth chrome
extension. It is divided into the following unique components:

• Node.js application
• Nginx Webserver
• MySQL (Relational Database)
• Redis (NoSQL Database)

2.2.1 Node.js Application

Most of the Air.Auth backend is powered by Node.js using express.js as the web
application framework. Express.js has a minimal set of robust features that allows for
rapid web application deployment. It allows server-side scripting using javascript and
gives huge scalability advantages. Node.js is built for real-time systems and uses an
asynchronous non-I/O blocking event model. The Node.js app runs on port 3000 which is
not the default web server port. As a result, there was a need to use Nginx to forward all
the default web server requests to Node.js.

2.2.2 Nginx Webserver

Nginx is very popular web server software used by multiple large-scale companies to
handle a large amount of concurrent requests. As mentioned above Node.js app runs on
port 3000, which is not the default web server port. This was done for added security
reasons as the most denial of service attacks target default web ports. To allow access to
the application Nginx was configured to forward all the default web server requests to
Node.js. If an attack were to occur it would be very simple to disable the forwarding and
move the site to a new port.

2.2.3 MySQL (Relational Database)

MySQL is one of the most popular open source relational databases. It is also easily
configurable and has been battle tested for years by various large-scale companies. The
benchmark tests for MySQL are positive and improve with every release. In this project,
MariaDB was used as the primary database. MariaDB is a fork of MySQL and has all the
features that are supported by MySQL. It also possesses optimizations in terms of
performance, making it an ideal choice.

2.2.4 Redis (NoSQL Database)

Redis is an In-Memory Key-Value store that is made to increase large scale application
performance. It has variety of data types that can be used for various purposes. These
data types include strings, hashes, lists, sets and sorted sets. Redis is single threaded,
meaning only one process will run on one core and will not utilize any other cores
concurrently. Since Redis is an in-memory database, all of its data is stored in the
RAM. Redis was used for session storage for users logged into Air.Auth and using the
chrome extension or the account management system.

Figure 2: Backend Component Interactions

3. User Functionality
3.1 Account Creation

Like any other service, the first task a user must complete to use Air.Auth is registration.
Registration is done locally within the Chrome extension and consists of two steps. In the
first step which is shown below in Figure 3, the new user provides their name, contact
email address, Air.Auth password (master password), and identifying PIN. Javascript
runs locally on this page to ensure that information is entered correctly, such as the
password hints shown below in red. Potentially confusing fields, such as password and
PIN are also given hint buttons. Once all fields have been filled and checked by the local
javascript, the greyed out “Continue” button will be enabled and the user can proceed to
the next step.

Figure 3: Registration UI (Step 1)

After completing the first registration step, the user is now ready to submit their
biometric hand information. This procedure requires the user to place their hand at a
specified location over the Leap Motion. This page is interactive, and aids the user by
showing them a shadow of their hand in real-time and hints on how to move their hand
into the collection zone. In order to complete this page a user must successfully scan their
hand 5 times, with their progress being actively displayed. Once 5 scans have been
completed, the user has completed registration.

Figure 4: Registration UI (Step 2)

3.2 Account Management

Once a user has successfully registered, they are automatically redirected to their
dashboard. The Air.Auth dashboard, shown below in Fig 5, resides on a remote server. A
user can access this dashboard with their email and master password from any internet
enabled device. This dashboard allows users to view and manage their saved sites, and
manage their account.

Figure 5: Dashboard

In order to manage their account, a user can either click on their email address in the top
left of the dashboard, or on “My Account” in the settings dropdown. This will direct
user’s to the “My Account” page. Within this page a user can view/terminate their active
sessions (Figure 6), change their master password (Figure 7), change their authentication
PIN (Figure 8), or delete their account (Figure 9). Once again, there is javascript running
locally on this page, ensuring that all fields are correctly filled before an action can be
submitted.

Figure 6: Session Management

Figure 7: Change Master Password

Figure 8: Change PIN

Figure 9: Delete Account

3.3 Site Management

Through the Air.Auth dashboard, a user is also able to add and edit their list of saved
sites. To edit a site, a user simply has to mouse over the site icon on the dashboard. To
add a site, a user must select the “Add Site” button from the upper navigation bar. Both
add and edit actions direct a user to the same screen, shown below in Figure 10.
However, in the edit case, all the fields will be populated with their prior values. Once a
user has selected a site, provided a username/password, and chosen a launching pose,
they are able to add that site to their account by selecting the “Save” or “Update” button.
At any time during the process, a user can also choose to discard their add/edit by
selecting the “Cancel” button, or delete this site from their account by selecting the
“Delete” button.

Figure 10: Add/Edit Site

Once a user has a added some sites, it becomes necessary to facilitate easy re-assignment
of poses to those sites. This feature can be accessed by selecting the “Manage Poses”
button in the upper navigation bar. Selecting this button will reveal the page shown in
Figure 11. On the right hand side of this page is a summary of which poses are assigned
or unassigned for this user. On the left hand side of the page, a user is able to quickly
reassign which poses are assigned to each site. As a user interacts with the left side of the
page, the right hand side is refreshed dynamically. Javascript is also running locally to
ensure that the drop down lists for each site contain only unassigned poses. Once a user is
satisfied with their assigned poses, they can submit their changes by selecting the
“Update” button.

Figure 11: Manage Poses

3.4 Account Linking

Once a user has successfully created an account and added sites, they are now ready to
begin using Air.Auth. The first step is to link their account to their current computer. This
is done locally by clicking the Air.Auth icon in Chrome. This action will cause the page
displayed in Figure 12 to be shown. On this page a user must login with their email and
master password. Once this is complete the account is linked. This page also enables
users to retrieve a forgotten password, which triggers a password reset email to be sent. A
linked account shows Air.Auth that this computer has permission to attempt to launch
that user’s sites. A linked computer will also appear in the Active Sessions tables shown
in Figure 6.

Figure 12: Account Linking

3.5 Site Launching

Once a user has linked their account to a computer, they can begin accessing and
launching their sites. This is a three stage process. In the first step, a user performs their
pose PIN code. This is done by sequentially holding each pose for 1 second over the Leap
Motion. If an error is made, the user can make a “thumb left” pose to delete the
previously entered PIN digit. Once a user has entered their 4 PIN digits, they perform a
“thumb right” pose to submit. This step is shown below in Figure 13. In this Figure, a
user has already entered 3 digits of their PIN, and has just had their final digit recognized.

Figure 13: Pin Entry

The next step in launching is to perform a hand scan. This is conducted similarly to the
initial hand registration. A user can view their hand shadow on the screen, and is
provided with prompts as to where their hand must be placed. Once a sufficient amount
of data samples have been collected, the user is moved to the next step. This step is
shown below in Figure 14.

Figure 14: Hand Scan

Finally, once a user has entered their PIN and scanned their hand, they are ready to
launch. The user can accomplish this by performing the pose they previously assigned to
the site they wish to launch. This step is shown below in Figure 15, where a user has
performed their “Facebook” pose. This action will cause a new tab to be created and
directed to Facebook, populated with their Facebook credentials, and logged in.

Figure 15: Launch Pose

4. Leap Motion
The beta version of the Leap Motion api enables the measurement and tracking of
individual bones. The beta v2 “Bone” api is available for multiple languages C#, C++,
Java, Python, Objective C, and Javascript. For use in the chrome extension, Javascript
was selected as the development language.

The beta “Bone” api is the basis for Air.Auth’s biometric hand authentication. It has the
ability to measure the width and length of the Distal phalanges, Intermediate phalanges,
Proximal phalanges, and Metacarpals for each finger, as well as the dimension of the
palm and the ability to differentiate between left and right hands.

Figure 16: Hand Model

To analyze the accuracy of Leap Motion some initial testing was performed. 50 samples
of a users hand dimensions were taken, then used to calculate the variance and standard
deviation for each measurement. For example, the standard deviation for the index finger
proximal phalange length was calculated to be 0.82952mm, and the standard deviation
for the index finger distal phalange length was calculated to be 0.32992mm.

A pattern quickly emerged, smaller standard deviations were seen for measurements
closer to the extremities of the hand. Further research revealed that the measurements
provided by the Leap Motion originated from the tips of the fingers. Therefore the
measurements closer to the extremities were more accurate while the measurements
closer to the wrist had more variance.

Leap works by latching onto identifiable features of a user’s hand. When a hand enters
the Frame (the area above the Leap Motion Device where it is capable of tracking a
hands), Leap locates the finger tips and other noticeable hand features. All the data

provided by the Leap device regarding that hand is then derived from these points. Once
the Leap device has identified these points, it continues to track them very accurately
until the hand completely leaves the frame.

This results in the data being outputted from the Leap device to remain incredibly stable
once it has located and begun tracking a hand, but vary significantly (for the purposes of
biometric identification) between instances of the same hand entering and leaving the
Frame. This variance is due to Leap latching onto slightly different points, resulting in
all derived measurements from these points varying accordingly.

To account for the varying measurements of a user’s hand between scans (and instances
of a user’s hand entering and leaving the Leap Frame) multiple scans could be performed,
then an average for each desired measurement calculated. Significant effort was put into
emulating a user’s hand entering and leaving the Frame by forcing the Leap device to
forget the hand it was currently tracking, requiring it to relocate the points it latches onto.
If this could be performed quickly, a large sample set could be gathered then averaged
resulting in an accurate measurement of a users hand.

After significant research and discussion with the both Leap Motion support and
development teams, it was concluded that this was not currently possible with the
Javascript API, as it did not connect directly to the Leap device but rather through a web
socket. Had the project been written in a language that provide more low level access
such as C, or C++ the result may be different although more analysis would be required.

Having the user remove then replace their hand from the Frame ten or more times to
gather sufficient data is cumbersome and defeats the purpose of the Air.Auth. As
emulating the hand entering and leaving the Frame could not be achieved and the
majority of the dimension and measurements provided by Leap were insufficiently
accurate to be of use for authentication, a different approach was needed which would
hopefully be independent of the variance of measurements.

As the variance of the hand measurements tended to simply shift all measurements up or
down (i.e affected all measurements evently) two alternative approaches to identifying a
user’s hand were explored. Firstly the difference between various bone lengths were
explored followed by the angles made between each joint.

The first alternate approach was to take each bone measurement then calculate the
magnitude of the difference between it and all other bones. This would be independent of
the variance output from Leap due to the nature of the calculation. For example if the
variance in the Index Finger Distal Phalange (D3 Figure 17) measurement was 0.3 mm, it
would likewise be the same for the Ring Finger Distal Phalange (D9 Figure 17).
Calculating the magnitude of the difference between the two:
|(D3 + Variance) - (D9 + Variance)| = |D3-D9|

We can see that the variance has no effect on the result. This calculation was performed
for each bone pair (e.g. |D3-D13|, etc) for a total of 13+12+11+...+1 = 91 results (when only
considering the lengths of each bone and not the width or other measurements).

Figure 17: Bone length differences

This appeared to have great potential, however after testing on numerous different hands
it became apparent that most hands tend to have very similar ratios. Even for hands which
appear to be quite different (a very small hand and a large hand) the results from the
magnitude calculations were extremely comparable. These results were therefore not
useful in authentication as almost all hands returned similar values.

The second approach taken after it became apparent that the magnitude of the bone length
differences were not sufficiently unique to each user, was to calculate the angles between
joints and finger tips.

Figure 18: Angles between fingertips and joints

This also appeared to have great potential, but was quickly determined to be infeasible. In
order to ensure the same angle was calculated between different scans, a user’s hand
would need to be closed as in Figure 18 compared to Figure 17. If the angles were
calculated when the user’s hand was open, as in Figure 17, there would be no guarantee
that a user’s hand would be in the same position on subsequent scans, resulting in
erroneous data. Unfortunately the Leap device has significant difficulty tracking fingers
and joints when there is no clear separation. Obtaining accurate position of joints and
finger tips to extract vectors then subsequently calculate the angles proved impractical as
the Leap could not reliably track a user’s hand in the closed arrangement (seen in Figure
18).

This left few options for the biometric authentication of a users hand using purely the
measurements provided by the Leap Motion. In order to get a functional biometric
authentication running, the authentication measurements were reduce to those that were
near the tips of fingers and determined to be sufficiently accurate. These include the
length and width of the Distal Phalanges and Intermediate Phalanges for all fingers (see
Figure 16).

While these measurements are fairly accurate and stable between scans, they could only
determine whether your hand is likely yours, though without certainty. To overcome this,
and ensure the authentication is certain the hand presented belongs to the user in
question, a second authentication mechanism was added.

Many methods were explored for the secondary authentication method including:

• Having the user draw their signature in the air
• Having the user perform a predefined authentication gesture that could then be

analysed
• Having the user perform their own defined gesture for authentication
• Having the user perform a series of poses defined by Air.Auth
• Having the user perform a series of poses defined by them for authentication.

The open source Leap Motion gesture and poses recognition library, Leap Trainer.js [1],
was utilised to explore the various techniques mentioned above. The above techniques for
authentication were analysed for accuracy, feasibility, flow, and simplicity. The optimal
option was having the user perform a series of selected but predefined poses. This
amounts to a PIN of defined poses selected by the users. To keep the flow of the
application smooth a PIN comprising of four poses was chosen.

Poses that could accurately be determined by Leap and the gesture library were selected
resulting in 8 unique poses for both the left and right hand. The user was able to select a
combination of any of these poses resulting in a keyspace of 164 = 65536 combinations.
As this is larger than the minimum keyspace for both credit and bank cards (PIN of 4
numeric digits, 10^4 = 10000), this authentication technique is satisfactory in proving the
identify a user. By combining the PIN authentication with the biometric hand
authentication, the security of a user’s Air.Auth account and therefore their various
username and passwords is ensured.

While the authentication of a user based purely on their biometric hand data from a Leap
Motion was not successful, a few of the limitations encountered are expected to be
removed in the future. The api used with the Leap Motion is currently only in beta, and
while it is expected to improve and provide more accurate data there are also plans to
allow direct access to the cameras within the Leap device. If this access was provided the
techniques utilized in “Robust Hand Geometry Measurements for Person Identification
Using Active Appearance Models” [2] could be implemented. As these techniques have
already been proven to accurately authenticate a hand, pure biometric authentication
using a Leap Motion should be possible, with a future version of the api.

5. API

The API was built using a number of backend components listed in the system
architecture section. It was built using Node.js with express.js as the framework and
written purely in javascript. It was implemented for supporting the Air.Auth chrome
extension. Its function is to accept HTTP requests from the chrome extension and
respond with relevant data. The API also communicates with the two databases (MySQL
and Redis) to obtain data for manipulation. It supports both GET and POST methods for
requests, which allows for a lot of flexibility when it comes to incoming requests.

An API has HTTP endpoints that the client application, in this case the Air.Auth Chrome
extension, can communicate with, submitting some data in order to obtain some response
data. The API endpoints correspond to an express.js route. The routes direct an incoming
request to an express.js function that takes query parameters and responds with some
data. The data can be in a number of formats such as JSON, Plain Text or XML. For this
project JSON was chosen to be the format for the response from the API. The various
routes in Air.Compute are listed and discussed below.

5.1 Index Route

Request Format:
GET /

Express.js Function:
app.get('/', routes.index);

This is the index route or endpoint that displays the default landing page for Air.Auth.
This page contains information about the chrome extension and documentation.

5.2 Sign Up Route

Request Format:
GET
/api/user/signup?name={user.name}&email={user.email}&password={user.password}&
pin_select_1={user.pin.first.digit}&pin_select_2={user.pin.second.digit}&pin_select_3=
{user.pin.third.digit}&pin_select_4={user.pin.fourth.digit}

Express.js Function:
app.get('/api/user/signup', routes.signup);

The signup route takes in user’s name, email, plain text password and the PIN code from
the query parameters. An initial database lookup is done in order to find out whether a
user exists with the same email address as the one requesting to signup, if so then the
route returns a 500 error code along with a message saying that the user already exists in
the system. Otherwise, the user’s plain text password and PIN code is hashed using an
one way hashing function. A random hash is also generated for password reset purposes.
All the data generated is then stored in the application’s session store (ie. Redis) and a
200 success code is passed along with the user’s email.

5.3 Login Route

Request Format:
POST /api/user/login

Data:
email - User’s email
password - User’s password
user_ids - An array of user ids that are linked to the computer
auth_ids - An array of authentication ids that are linked to the users

Express.js Function:
app.get('/api/user/signup', routes.signup);

The login route takes in user’s email, password, array of user ids and auth ids that are
linked to the computer making the request. The user’s plain text password is then one
way hashed and a database query is done to validate whether the user is a valid Air.Auth
user. If the user cannot be found in the database then a 500 error code is returned with a
message that the user is not valid. If the user is found in the database, then all the user
details are obtained and the user’s id and PIN are stored. Next, a random authentication id
and key pair is generated and stored in Redis. The user’s plain text password is then
encrypted using the authentication key. The encrypted password that is generated can be
decrypted on the client side using the authentication key. The user-agent and the ip
address of the user is then obtained and associated with the user’s id. This creates a valid
Air.Auth session for that user.

Another key piece of logic that comes into play is when the user that is attempting to
login has the same PIN as a user that is already present on that computer. The user_ids
array is used to query the database and the users that have the same key as the user that is
trying to login are logged out by invalidating their Air.Auth session in Redis.

After all the above operations are successfully performed, a response is generated that
contains a 200 success code with the user’s encrypted key, authentication id, user email,
user id and an array of users that have the same PIN as the user that is trying to login.

5.4 Hand Compute Route

Request Format:
POST /api/hand/compute

Data:
user_hand - User’s hand data object

Express.js Function:
app.post('/api/hand/compute', routes.hand_compute);

Session Data:
user_email - User’s emails from session
name - User’s Name from session
encoded_password - User’s encoded password from session
encoded_pin - User’s encoded pin from session
password_hash - User’s random password hash

The hand compute route obtains user hand data from the POST request and the remainder
of user’s data from the session storage, which was stored in the sign up route. The user is
then registered by inserting the user data that was obtained from the session into the user
table in MariaDB.

The user hand data object obtained from the request contains five samples of data that are
to be inserted into the database. There are two inserts that take place in this route that
involve user hand data. First, the insert into the hand_data_average table and another in
the hand_data_raw table. The first insert requires that hand data object to be parsed
through and averaged. After the average has been computed, the data object is then
prepared for the database insert into the hand_data_average table. Once this insert is
complete the five raw readings are inserted into the hand_data_raw table.

After the user hand data is inserted into the database, user’s email and id is stored in
session. A random user token is then generated and stored in session. This is done in
order for the application to recognize the user is valid. This helps in logging the user in
after the signup process is complete. Finally, a response with a 200 success code and a
boolean value true is sent back to the client computer.

5.5 Hand Authentication Route

Request Format:
POST /api/hand/authenticate

Data:
user_hand - User’s hand data object

Express.js Function:
app.post('/api/hand/authenticate', routes.hand_authenticate);

Session Data:
user_id - User’s id from session

In the hand authentication route, the user’s id is used to get all hand measurements that
were stored in the database in the hand compute route. A database query is done that
gathers all the hand data belonging to a user id from hand_data_average table, this returns
a javascript array. This array is then compared with the user hand data object that was
obtained from the POST data with a help of a special utility class called authentication.js.
The class has a function called “auth” that takes in incoming user hand data object,
database user hand data and various tolerance values for comparison. The tolerance
values that are taken into consideration are as follows:

• Distal Length Tolerance
• Distal Width Tolerance
• Medial Length Tolerance
• Media Width Tolerance
• Palm Tolerance

These tolerance values are used to compare the difference in the incoming user hand data
readings with respect to the user hand data readings obtained from the database. If the
difference between the incoming user hand data and the database readings are within the
tolerance values, then the incoming user is considered valid. There are a lot of tests that
are done in a similar fashion for all of the hand dimensions that are part of the user hand
data. The end product of all the comparisons is a score that is out of 72. This score is then
turned into a percentage and passed back to the route by the “auth” function.

The percentage obtained from the “auth” function is then used to find out whether a
user’s hand is valid or not. If the percentage is greater than 75 then the user’s hand data is
valid, otherwise the user’s hand data is invalid and doesn’t match the user’s hand data
obtained from the database. After the hand data is validated then a random hand token is
generated and associated with the user id and stored in Redis with a very short time to
live. This is done to provide easy access for the user that is using Air.Auth to launch
websites. This allows the user to only enter the pin and launch sites without going
through the hand authentication step. This hand token is valid in Redis for 10 minutes.
The response contains a 200 success code, user id and a hand token that was generated
earlier.

5.6 Validate Pin Route

Request Format:
POST /api/pin/authenticate

Data:
pin - User’s pin
user_ids - Array of user ids
hand_tokens - Array of hand tokens

Express.js Function:
app.post('/api/pin/authenticate', routes.pin_authenticate);

The pin that is obtained from the POST request is hashed. The hashed pin and the user ids
is used to look up user data from the users table. The idea is to find the user with the
same pin as the one provided in the request. This search is narrowed down from the entire
database by only requiring to lookup users defined by the user ids array provided. Using
the user data obtained from the database query, a lookup is done in Redis to find out
whether that user has a valid hand token. If a valid hand token is found, a response with
200 success code, user id and valid hand token is sent back. Otherwise a response with
200 success code, user id and empty token is sent back.

5.6 Session Get Route

Request Format:
POST /api/session/get

Data:
auth_ids - Array of authentication ids
ids - Array of user ids

Express.js Function:
app.post('/api/session/get', routes.session_get);

The array of auth ids are looked up in Redis and the auth ids that are not found in Redis
are returned back as invalid ids. The response is a 200 success code and the array of
invalid ids.

5.7 Get Auth Key Route

Request Format:
POST /api/key/get

Data:
a_id - User’s authentication id
user_id - User’s id

Express.js Function:
app.post('/api/key/get', routes.auth_key_get);

In this route, the authentication id from the POST request is used to find if the id is valid
in Redis. If the authentication id cannot be found, then the response is 500 error code
with an invalid id message. If the authentication id is valid then a hand token is generated
and stored in Redis with a time to live of 10 minutes. The result from the authentication
id lookup is used to obtain the authentication key. The response is a 200 success code,
authentication key and hand token.

5.8 Launch Route

Request Format:
POST /api/user/launch

Data:
pose_name - The name of the pose

Express.js Function:
app.post('/api/user/launch', routes.launch);

Session Data:
user_id - User’s id from session

The pose name is obtained from the POST request and the user id is obtained from the
session. A complex data query is then done to obtain all site data for the given user id and
pose from the database. If the there is no website that corresponds to the pose that was
provided, the response is a 404 not found error code and the user id. If a website is found
then the response is a 200 success code, all the details associated with the website, and a
“found a site” message.

6. Database
6.1 MySQL

Air.Auth utilizes MySQL to store persistent data. This data is broken into 6 tables, the
first being the “user” table. The user table is described below in Table 1. It is in this table
that all information gathered through the first registration step is stored. All sensitive data
like passwords and PINs are one-way hashed to protect users. Also, upon signup, a
random hash is created for each user to be used for password recovery. Once a user
requests a password recovery, a link containing this hash is sent in an email.

Column
Name

Column
Type

Description Example Entry

id smallint(11) Primary Key, Auto-
Incremented

156

name varchar(255) Null Allowed Cole Bosmann

email varchar(255)

cole_bosmann@hotmail.com

password varchar(255) One-way Hash d90c8c4b8e8c4af4ddf3dde5ab47
b6231e7c9078ced539846be25b9
37cfc437e

recovery_hash varchar(255) Random Hash 5e18aa9d9ddf6cbbe4f4
b0a73df444641932ec93

pin varchar(255) One-way Hash 5cf6ef7a5fb3f1a257209520
f8c17023d6c7068a6ef5970
9d4f79a27bd387d5c

Table 1: User Table

The second table in the MySQL DB is the pose table. This table contains all of the valid
poses available to Air.Auth users. This table is summarized below in Table 2. All
Air.Auth sites dynamically pull from this table, therefore in order to add a new pose, an
admin must simply insert into this table and it will be made instantly available to all
users.

Column
Name

Column
Type Description Example Entry

id smallint(11) Primary Key, Auto-Incremented 78

name varchar(255)

R-1-[0-1-0-0-0]

json text Json that can be interpreted by Leap to
describe a pose

{example: json}

Table 2: Pose Table

The third table in the MySQL DB is the site table. The site table contains all of the
information for saved user sites. Relevant information includes the site
username/password, which user this site belongs to, and the assigned launching pose. In
order to mitigate against errors, both the user_id and pose_id fields are foreign keys. This
means that users and assigned poses must be present in the user and pose table to be valid
in the site table. This table is described below in Table 3.

Column
Name

Column
Type

Description Example Entry

id smallint(11) Primary Key, Auto-
Incremented

122

user_id smallint(11) Foreign Key 156

name varchar(255)

linkedin

url varchar(255)

http://linkedin.com

username varchar(255) Encrypted Object {"ct":"MSAvAiZGr7WVkb4YYAgUC
Q==","iv":"b94298be1e1af8f1c32b8f7e
a962b428","s":"6fb106846222608a"}

password varchar(255) Encrypted Object {"ct":"ziqqprRu3x5nyguMhG46Rg==",
"iv":"889711b2589cff5043854131e1ad7
862","s":"5e760135358c8a2c"}

pose_id smallint(11) Foreign Key 74

Table 3: Site Table

The fourth table in the Air.Auth database is the pose_assigned table. This very simple
table is used to link users with their sites, and sites with their assigned poses. In this table,
all fields are foreign keys, ensuring that all relationships created between database
entities are legitimate. This table is shown below in Table 4.

Column Name Column Type Description Example Entry

user_id smallint(11) Foreign Key 156

pose_id smallint(11) Foreign Key 73

site_id smallint(11) Foreign Key 121

Table 4: Pose Assigned Table

The two final Air.Auth tables are used to store the biometric information obtained from
hand scans. The first table contains raw dimension, with each row belonging to a specific
user and representing the average values of one scan. The second table contains a rolling
average of a user’s average hand dimensions. Each time a user successfully scans their
hand, a row is added to the raw table, and a new average is calculated and updated in the
average table. Only the past 100 scans are included in the average, which helps
compensate for gradual changes a user’s hand may undergo (weight loss, weight gain,
etc…).

6.2 Redis

Redis is known for its large variety of datatypes such as keys, strings, hashes, lists, sets
etc. While building the express.js application for Air.Auth, Redis was used to do fast
lookups for valid user data. This data included authentication id and key pairs, user’s
session data, user valid hand tokens and application session data. The format and the data
type for the data stored in Redis is shown in the table below.

Data Access Name Data Type Data Structure

{authentication_id} STRING "{user_id}::::{authentication_key}"

userid::{user_id} SET "{authentication_id}::{user_agent}::
{ip_address}"

hand_token_user_id::
{user_id}

STRING “{random_hand_token}”

Table 5: Redis Datastore for Air.Auth

The data that is stored in Redis has to be accessed using the Redis client for Node.js. The
Redis client supports almost all types of commands that can be issues to Redis. The
commands were issued to access the data from Redis for Air.Auth are shown in the table
below.

Data
Type

CLI
Command Client Function Description

STRING GET db.get(key, callback function); Get string value for a key

STRING SETEX db.setex(key, ttl, callback
function);

Set a value in Redis for a
key with a specific time to
live in seconds

STRING TTL db.ttl(key, callback function); Get the time to live for a
key

SET SADD db.sadd(setName,
memberData, callback
function);

Add a member to a set. If
set does not exist then this
command creates a set

SET SMEMBERS db.smembers(setName,
callback function);

Get all the members in a set

KEYS DEL db.del(key, callback function); Delete any key with the
keyname that is provided

Table 6: Redis CLI and Node.js Client Commands to Access Data

The SETEX, TTL and the GET operations are of complexity 1 (ie. O(1)). The SADD and
SMEMBERS operations are of complexity O(N) where N is the number of members to
add in a set.

The challenge about using Redis is that the data stored in it is mostly in string format, and
since it is a NoSQL database the relationship between data objects is not maintained,
hence there is a need to have additional logic in the code. The use of delimiters is
essential and necessary for storing data into Redis. However, there is a huge performance
gain in terms of lookups since most of the lookups are O(1) complexity, that in turn helps
makes the API very responsive.

7. Security
7.1 User Validation

In order to manage their account and access/add/edit sites, users must authenticate using
their master password. As a result, Air.Auth must store some form of a user’s master
password in order to authenticate. Storing plain text passwords constitutes a security risk,
therefore Air.Auth hashes a user’s password upon entry to the system. This hashing
changes the password from a recognizable word or phrase to a seemingly random
combination of letters, numbers, and symbols. This hashing is also irreversible, meaning
if the system is compromised, attackers will not be able to reverse the hash to obtain the
plaintext master passwords.

Although this hashing is not reversible, it is deterministic, meaning that any given input
will yield the same output from the hashing algorithm. This is how Air.Auth
authenticates, upon registration it stores a hashed version of a user’s master password. On
subsequent logins, Air.Auth again hashes the attempted login password, and compares
with the stored hash password. An example of this scheme is shown below in Figure 19.

Figure 19: Password Hashing

The Air.Auth PIN is also stored and authenticated against in a similar fashion. Because
the PIN is a series of JSON objects, they can be converted to strings and then hashed.
Air.Auth utilizes the SHA-256 hashing algorithm. This is an algorithm designed by the
NSA, and is the current industry standard for hashing sensitive information.

7.2 Site Password Encryption/Decryption
A main challenge when creating a password manager is keeping the stored passwords
secure. In case the system is compromised, it is important that passwords are not stored in
plaintext form. In the previous section, hashing solved this problem. However, with the
site passwords it is critical that the transformation be reversible, as the plaintext is
required to submit to the sites/services. For the desired level of security, it became
necessary to implement encryption of the site passwords. Encryption represents a two-
way transformation, allowing for a plaintext password to be temporarily scrambled
(encrypted), and then reassembled (decrypted) using a unique key. This key was chosen
to be the user’s most unique and secure attribute, their master password.

Although encryption with the master password solved the original problem, it created a
new one. Under this scheme users would be forced to supply their master password every
time they needed access to an encrypted site password. This is a huge inconvenience and
was deemed unacceptable. Instead, the fact that a user supplies their master password
when linking their account was utilized. This master password was made persistent
through a local cookie on the user’s computer. This way, whenever decryption was
required, this master password could be retrieved from the cookie, and used as the key.

This solution led to yet again another problem, was it acceptable to keep a plaintext
master password in a local cookie? Because Air.Auth was designed to be used on shared
computers, this was once again deemed unacceptable. The master password was then
encrypted, using an authentication key. This auth key was paired with an auth id. These
pairs were created each time a user linked their account to a computer, at the same time
that the local cookie is set. The local cookie now contains the auth id, and the encrypted
master password. Once a site password is required, the auth id is sent to the server, the
auth key is returned, the master password is decrypted, which then allows the site
password to be decrypted.

Although this security scheme appears convoluted, it was necessary to secure the
Air.Auth system. This scheme ensures that keys to encryption are never stored in the
same place, and that interaction between the client and server is required in all decryption
steps. This way, for the system to be compromised, an attacker must compromise both
the server and the client simultaneously. The encryption algorithm used was AES-256,
which was developed by NIST, and is commonly used in industry. To further elaborate,
two main use cases for encryption and decryption are shown below in Figure 20 and
Figure 21.

Figure 20: Account Creation / Account Linking

Figure 21: Fetch Site Password

8. Session and Cookie Management
Session and cookie management are an integral part of Air.Auth. There are three types of
sessions that are used within Air.Auth, each serving different purposes. They are as
follows:

• Air.Auth User Session
• Air.Auth Account Session
• Air.Auth Hand Token Session

8.1 Air.Auth User Session Management
As mentioned earlier, when a user logs into a computer or links their account with a
another computer, a pair of authentication hashes are created, an authentication ID, and
an authentication key. The authentication ID is passed back to the extension and stored in
a cookie, while the authentication key is stored in a Redis string with authentication ID as
the index for fast lookups. The ID and key are linked pairs, which is essential in securing
the username and passwords for the various user websites, but they also to serve in
validating a user’s sessions.

As the authentication key has a 7 day TTL, every time a user interacts with Air.Auth, the
validity of all user sessions connected to the computer are checked. All of the cookies
belonging to Air.Auth are inspected and the authentication ID extracted. These IDs are
sent to the remote server (API) to check for matching and active authentication keys. If
any of the users have authentication keys that have expired the corresponding cookie (i.e
the one with the linked authentication ID) is then removed from the computer. As the
cookie stored locally is the only place where the decryption key for user website
credentials is stored, and as the credential decryption key itself requires the authentication
key to be decrypted (see section 7.2), this ensures that no invalid sessions are able to
access any user information. Once the authentication key is expired, the local cookie is
invalidated and is useless to all people including attackers. This is because the credential
decryption key itself will not be able to be decrypted, because it’s key (the authentication
key) will have been deleted.

8.2 Air.Auth Hand Token Session
A second independent session was implemented to facilitate the launching of multiple
websites once a user is successfully authenticated. The first time a user authenticates they
must enter their PIN then scan their hand. If they successfully validate both they may
then perform a pose and launch their site. However if the wrong pose was performed and
an undesired page launched, or the user simply wishes to launch another page shortly
after the first, they would be required to perform both the PIN and scan again.

To eliminate some unnecessary steps in launching a website, a short lived “Hand Token”
session was created. Once the user successfully enters their PIN and scans their hand a
short lived cookied with a 10 minute TTL is created on the users computer. This cookie
contains a Hand Token (a random hash) generated on the remote server and likewise
stored in Redis with a 10 minute TTL as well. On subsequent PIN entries, the validity of
all Hand Tokens is checked. If the entered PIN matches a valid Hand Token, the user is
directed to launching of a site without scanning their hand as we can be fairly certain it is
the same user sitting at computer. If a wrong PIN is entered or the Hand Token is
expired, then the user must successfully pass both the PIN entry and the hand scan to be
able to launch a website.

This secondary session significantly simplifies and speeds up interactions with Air.Auth
while maintaining the high level of security we have strived to achieve.

8.3 Air.Auth Account Session Management
Lastly as the account management pages of Air.Auth contain very sensitive data, a third
completely separate session was desired to ensure access was only granted to the valid
user. The account session for Air.Auth users is purely application based. It is
implemented using express.js session store and have a TTL of 10 minutes. Once a user
logs in to the account management system, an unique user token is generated that acts as
an identifier for a users session. The browser automatically creates a cookie in this case
since the session is handled directly by express.js. The session is destroyed each time the
user visits the login page and logout pages. This is done to deal with the multiple user
scenario when one user tries to access the account of another user not knowing that there
might be a user already logged in.

The account session is used to store user’s email and user id. This implementation is very
efficient since there are no database lookups that need to be done in order to gather user
data for the required account management operations.

9. Chrome extension
As our project at its basis is a password manager for your various online accounts,
incorporation with a browser was essential. As all modern browsers support some form of
extensions (Add-Ons for Firefox, Extensions for Safari and Add-Ons for IE) Air.Auth
could have been written for any of them. Eventually the goal is to have Air.Auth function
with all major browsers, however due to time constraints, the scope of the project was
limited to a single browser. With all members of the team using Chrome as their main
browser it was the clear choice to develop for first. Chrome has a very well documented
api for developing extensions and a vibrant community. This turned out to be invaluable
as we learnt the intricacies of creating Air.Auth and reinforced our view of Chrome being
a great platform to develop within.

One of the key dilemmas faced due to the nature of having a remote server backend and a
local extension front end was deciding which elements of the application should be where
(i.e. local or remote). As an example when a user enters a username and password for
their Facebook account, should the encryption of the fields be handled locally or done on
the remote server. Practices of well known companies such as Facebook and other
extensions were investigated as well as the performance of Leap when hosted remotely vs
locally. With the decision to have a separate session solely on the remote server when
managing a users account, it was decided that all Leap related elements should be hosted
locally to ensure the highest possible performance while all user management related
elements would be hosted remotely using the separate sessions to ensure maximum
security. There were, however, some exceptions, notably the decryption of a user's saved
website username and password (i.e Facebook).

Arguably the only and most important reason for building Air.Auth as an extension rather
than simply as a website is due to the Same-Origin Policy. This Policy states that scripts
may only run on sites that originate from the same domain. As we require the ability to
pass usernames and passwords to various sites, running Air.Auth as a website would
conflict with the Same-Origin Policy resulting in not being able to launch other websites
and log user in.

The Chrome extension eliminates this issue by giving direct access to various sites
through the use of Content Scripts. Content scripts are scripts which can be embeded on
any site specified by the extension. Though they are part of the extension they originate
from, they are their own entities completely separated from the rest of the extension. To
communicate with the content scripts, message can be exchanged using Chrome’s built in
message passing. Only one content script was needed for Air.Auth but provided the key
ability to pass the username and password to the desired websites, and then subsequently
log the user into that site. For the purposes of this project, where to insert the username
and password on the various sites was hardcoded into the content script. This is very
limiting and can be easily broken if Facebook or Twitter were to change any input id
name, however, it successfully proved the concept and allowed us to focus our effort on
other more demanding aspects of the project. We plan to implement a more robust
solution, which is discussed in Future Work.

10. Future Work
Firstly, while hashing of a user’s master password and PIN eliminates the risk of
exposing plaintext passwords, it is not a completely secure solution. Should the database
be compromised, an attacker is able to feed dictionary words into the hashing algorithm,
and compare the results with the list of hashed user passwords. If a match is found, the
attacker knows the input that resulted in this match, therefore giving them the password.
This is called a rainbow table attack. The main defense against this is to slow down the
speed at which the attacker can hash their guesses. This is accomplished through key
stretching, where a password is rehashed multiple times (100-10000 times). This
increases the time a single guess takes to evaluate, slowing down a rainbow table attack
and making it unfeasible. Future versions of Air.Auth will include this feature to mitigate
against this attack vector.

Secondly, as the original plan for the project called for the ability to launch websites with
gestures (e.g drawing an F to launch Facebook), but could not reliably be accomplished
with currently available libraries, it is a functionality we wish to still implement. This
may require the creation of our own library for gesture recognition, but we believe with
the added accuracy provided by the new v2 beta “Bone” api (and future stable versions),
improved third party libraries will become available that could accomplish our desired
goals.

Incorporating these improved libraries would provide the possibility of not only
launching websites through the use of gestures but also increasing the pose PIN keyspace
by augmenting the number of poses that can reliably be detected, further securing the
system.

If the gesture recognition libraries do improve significantly the possibility of utilising a
user’s signature, performed by tracing their finger through the air, could be added to
enhance the security measurements or replace one of the current authentication methods.

Thirdly, we would like to expand the scope of sites that can be stored in Air.Auth.
Currently this is limited to a few select sites as the ability to pass username and password
to the desired sites needs to be hard coded into the extension. We realise that this is
suboptimal, but designing a system that can accurately located and interact with all the
various login forms across the internet was beyond the scope of this project. This,
however, is not something we wish to leave uncorrected. Designing this system will be an
interesting challenge and one we look forward to overcoming.

Lastly we wish to boost the abilities of the biometric authentication. We want to
authenticate a user based solely on the scanning of their hand. As the v2 “Bone” api is
improved, the currently implemented biometric authentication method will also improve.
Though these improvements may be sufficient to positively identify a user’s hand with
sufficient confidence, they will likely continue to need a secondary authentication method
to truly prove the identity of the user’s hand. To overcome this the image process
techniques analysed in Robust Hand Geometry Measurements for Person Identification

Using Active Appearance Models [2] could be implemented once access to the images
obtained by the Leap device is given. Though no timeframe for this access has been given
by Leap, it is something we will continue to keep our eyes on it as it would be the
solution to the biometric authentication issues we have encountered.

This project has had many interesting challenges and obstacles. We feel the final product
accurately reflects the work we have put into it, the quality we strived to achieve and
functionality we intended to implement. We look forward to improving the project more
and eventually releasing the project into the chrome app store.

11. References:

[1] O'Leary, Rob. Leap Trainer.js. Github, 1 Sept. 2014. Web. 20 May 2014.
<https://github.com/roboleary/LeapTrainer.js/commits/master>

[2] Gross, R., Li, Y., Sweeney, L., Jiang, X., Xu, W., & Yurovsky, D. (2007). Robust
Hand Geometry Measurements for Person Identification Using Active Appearance
Models. IEEE Conference on Biometrics.

